
pytest-django-queries Documentation
Release 1.0.0

KOCAK Mikail (NyanKiyoshi)

Sep 03, 2020

Contents

1 Quick Start 3

2 Getting Help 7

3 More Topics 9
3.1 Recommendations (Must Read!) . 9
3.2 The Diff Command . 10
3.3 Customizing the Outputs . 10
3.4 Plugin Usage . 11
3.5 CLI Usage . 12
3.6 Contributing . 13
3.7 Changelog . 13

i

ii

pytest-django-queries Documentation, Release 1.0.0

pytest-django-queries is pytest plugin tool for measuring the database query count of a django project. It
captures the SQL queries of marked tests to generate reports from them that can then be analyzed, proceeded and even
integrated to CIs and GitHub as a peer reviewing tool (bot).

This is used to detect and correct features that are missing optimizations or that should be rethought, and which parts
are doing great.

This is also used to quickly see and compare differences of made changes through the included diff tool.

This tool supports the Python versions: 2.7, 3.4, 3.5, 3.6, 3.7, and 3.8.

Contents 1

pytest-django-queries Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Quick Start

1. Install the tool by running pip install pytest-django-queries;

2. Use the plugin by marking tests or by using the provided fixture:

import pytest

@pytest.mark.count_queries
def test_query_performances():

Model.objects.all()

Or...
def test_another_query_performances(count_queries):

Model.objects.all()

3. Run pytest;

4. Then use django-queries show to show the results directly into your console:

+---------+-------------------------+
| Module | Tests |
+---------+-------------------------+
module1	+-----------+---------+			
		Test Name	Queries	
	+-----------+---------+			
		test1	0	
	+-----------+---------+			
		test2	1	
	+-----------+---------+			
+---------+-------------------------+				
module2	+-----------+---------+			
		Test Name	Queries	
	+-----------+---------+			
		test1	123	

(continues on next page)

3

pytest-django-queries Documentation, Release 1.0.0

(continued from previous page)

| | +-----------+---------+ |
+---------+-------------------------+
| module3 | |
+---------+-------------------------+

5. Or for a nicer presentation, use django-queries html to export the results as HTML. See this example
for a demo!

6. By running it twice with the option described here and by running django-queries diff you will get
something like this:

4 Chapter 1. Quick Start

./html_export_results.html

pytest-django-queries Documentation, Release 1.0.0

Warning: Please take a quick look at our recommendations before starting using the plugin in your project tests.

5

pytest-django-queries Documentation, Release 1.0.0

6 Chapter 1. Quick Start

CHAPTER 2

Getting Help

Feel free to open an issue in our GitHub repository! Or reach hello@vanille.bid.

7

https://github.com/NyanKiyoshi/pytest-django-queries/issues
mailto:hello@vanille.bid

pytest-django-queries Documentation, Release 1.0.0

8 Chapter 2. Getting Help

CHAPTER 3

More Topics

3.1 Recommendations (Must Read!)

3.1.1 Fixtures That Generate Queries

If your test case is using fixtures that are generating any database queries, you will end up with unwanted queries being
counted in your tests. For that reason, we recommend you to manually request the usage of the count_queries
fixture and put it as the last parameter of your test.

By doing so, you will be sure that the query counter is actually always executed last and does not wrap any other
fixtures.

Along side, you might want to still use the plugin’s count_queries marker which is useful to keep your tests
separated from the query counting tests.

Your code will look like something like this:

import pytest

@pytest.mark.count_queries(autouse=False)
def test_retrieve_main_menu(fixture_making_queries, count_queries):

pass

3.1.2 Using pytest-django Alongside of Counting Queries

You are most likely using the pytest-django plugin which is really useful for django testing. By following the
previous section’s example, you might want to unblock the test database as well. You would do something like this:

import pytest

(continues on next page)

9

pytest-django-queries Documentation, Release 1.0.0

(continued from previous page)

@pytest.mark.django_db
@pytest.mark.count_queries(autouse=False)
def test_retrieve_main_menu(any_fixture, other_fixture, count_queries):

pass

3.2 The Diff Command

The plugin can backup the test results for you if you run the django-queries backup [BACKUP_PATH]
command. It will create a backup to .pytest-query.old by default if previous results were found.

Warning: Bear in mind that it will override any existing backup file in the provided or default path.

After running pytest again, you can run django-queries diff to show the changes. Make sure you actually
had previous results, otherwise it will have nothing to compare.

3.3 Customizing the Outputs

3.3.1 Customizing the console output

To be done, feel free to open a PR!

3.3.2 Customizing the HTML output

We are using jinja2 as a template engine for rendering results. You can customize it by passing the --template
<YOUR_TEMPLATE_PATH> option.

The test data are passed to the data variable. It contains an iterator of:

[
("the module name", [

"the test name", {"query-count": int},
...

],
...

]

Note: We also provide a humanize function that takes a string a removes from it the test_ prefix.

For example, you would do the following to show all the results:

{% for module_name, module_data in data %}
<section>

<h2 class="text-capitalize">{{ humanize(module_name) }}</h2>

<table class="table table-bordered mb-5">
<thead>

(continues on next page)

10 Chapter 3. More Topics

http://jinja.pocoo.org/

pytest-django-queries Documentation, Release 1.0.0

(continued from previous page)

<tr>
<th>Benchmark name</th>
<th>Query count</th>

</tr>
</thead>

<tbody>
{% for test_entry in module_data %}

<tr>
<td class="text-capitalize">

<code>{{ humanize(test_entry.test_name) }}</code>
</td>
<td>

{{ test_entry['query-count'] }}
</td>

</tr>
{% else %}

<tr>
<td colspan="2">

<p>No data.</p>
</td>

</tr>
{% endfor %}

</tbody>
</table>

</section>
{% else %}

<p>No data.</p>
{% endfor %}

3.4 Plugin Usage

The plugin supports some optional parameters that are defined below.

3.4.1 Customizing the Save Path

--django-db-bench=PATH
Output file for storing the results. Default: .pytest-queries

3.4.2 Backing Up Results

The easiest way is to run the django-queries backup command which will create a copy of the current results.

Another way is by passing the --django-backup-queries parameter to backup previous results to .pytest-
django.old‘.

Or pass a custom path.

--django-backup-queries=[PATH]
Whether the old results should be backed up or not before overriding.

3.4. Plugin Usage 11

pytest-django-queries Documentation, Release 1.0.0

3.4.3 Running Tests Separately

To only run the count_queriesmarked tests and nothing else, you can run pytest -v -m count_queries.

3.5 CLI Usage

Usage: django-queries [OPTIONS] COMMAND [ARGS]...

Command line tool for pytest-django-queries.

Options:
--help Show this message and exit.

Commands:
html Render the results as HTML instead of a raw table.
show View a given rapport.

3.5.1 The HTML Command

Usage: django-queries html [OPTIONS] [INPUT_FILE] [-o OUTPUT FILE]

Render the results as HTML instead of a raw table.

Options:
-o The path to save the HTML file into

django-queries.html by default.
You can pass a dash (-) to write to stdout as well.

--template JINJA2_FILE Use a custom jinja2 template for rendering HTML results.

--help Show this message and exit.

3.5.2 The SHOW Command

Usage: django-queries show [OPTIONS] [INPUT_FILE]

View a given rapport.

Options: none

3.5.3 The DIFF Command

Usage: django-queries diff [OPTIONS] [LEFT_FILE] [RIGHT_FILE]

Render the diff as a console table with colors.

Options: none

More details on how to use the diff command properly.

12 Chapter 3. More Topics

pytest-django-queries Documentation, Release 1.0.0

3.6 Contributing

To contribute, you can fork us! And open any pull request or tackle any issue in our GitHub repository.

3.6.1 Recommendations

• Try to be on one of the latest master versions.

• Try to always put and commit your change sets into a new and meaningful branch in your fork.

• Update the changelog file with the changes you made.

3.6.2 Code Style

We are using Black and Flake 8 to ensure a consistent code-style and reduce common Python issues in changes.

You can install a checker by running pre-commit install after installing our development requirements (pip
install -e '.[dev]'). After that, you can add your changes through git and run pre-commit to check if
your changes are issue-free.

3.6.3 Pull Request Review Process

Your contributions will get reviewed and will receive comments, remarks and suggestion to get the best of your pull
request! It may take time, days or even weeks before you get a review from us. But don’t worry, we won’t forget about
it, it just mean it is in a backlog because we are too busy for now.

You will get reviews from bots (CIs) that will succeed or fail. Mostly from travis-ci and codecov. Please be careful
about them, they are important checks that we get your contribution denied as long as those checks are not passing.

Travis-ci is there to check that your changes work (tests and linters). If travis fails, it means something is wrong with
your changes. Look at the logs, it will tell you what’s going on!

Codecov is there to report the test coverage of your changes. We have a strict 100% coverage, meaning that all the
code is covered by automatic tests. Please test all your changes and test them hastily, don’t test just for the sake of
testing and to get a proper coverage. . . it’s wrong. We want the tests to prevent any error and any potential breaking
from changes!

Finally, make sure you are using the latest version of the dependencies and that you have read our documentations.

3.7 Changelog

3.7.1 v1.0.0 - June 7th 2019

• Released the stable v1.0.0 release without any changes.

3.7.2 v1.0.0rc3 - June 6th 2019

• Added support for running tests into multiple workers (pytest-xdist).

3.6. Contributing 13

https://github.com/NyanKiyoshi/pytest-django-queries/issues
https://github.com/python/black
http://flake8.pycqa.org/en/latest/

pytest-django-queries Documentation, Release 1.0.0

3.7.3 v1.0.0rc2 - June 5th 2019

• Renamed the marker description to be more meaningful about was it does.

• Fixed a typo in the project description (PyPi and GitHub).

• Added help texts for named parameters in the cli.

• Fixed the wrong help text saying it is taking an integer when it actually expects a file path.

• Users can now mark tests without having the count_queries fixture injected automatically if a custom order
or manual usage is needed.

• Added a better filtering of unwanted keywords in humanization of test names. It now handles test cases names
inside modules (dotted import names).

• Added a backup command to django-queries to make it easier of making a copy of the current results.

3.7.4 v1.0.0rc1 - May 24th 2019

• Users can now backup/copy their previous results using the --django-backup-queries parameter when
running pytest.

• The HTML cli command now exports to django-queries-results.html by default instead of
stdout, instead, users have to run django-queries html - for the output to go in stdout.

• The code now enforces the Black code style and Flake 8 checks in addition to isort.

3.7.5 v1.0.0b1 - May 24th 2019

• Implement a diff command for comparing results.

3.7.6 v1.0.0a2 - May 17th 2019

• The requirements that could generate any diverging results between installation have now been freeze.

• A “Read The Docs” documentation has been made and published.

• Guides on how to release and contribute have been added.

• The HTML template has been moved to its own file under the package directory as templates/
default_bootstrap.jinja2.

• The Cli commands are now taking optionally the report path file, so it can now be omitted.

3.7.7 v1.0.0a1 - May 13th 2019

• In #12, stopped storing the benchmark results in a file named after the current date and time. Instead, it will
always save into .django-queries and won’t contain a json file extension anymore to make it less ap-
pealing as it’s not meant to be read by a human.

• In #12, dropped the environment variable PYTEST_QUERIES_SAVE_PATH and replaced and introduced the
--django-db-bench PATH option instead, which does exactly the same thing.

14 Chapter 3. More Topics

pytest-django-queries Documentation, Release 1.0.0

3.7.8 v1.0.0.dev1 - May 12th 2019

• Introduced the cli (#3) with two commands:

– show that process a given benchmark result to render a summary table

– html render the table in HTML, the template can be customized using --template <path>

3.7.9 v0.1.0 - May 7th 2019

• The plugin is now able to support multiple pytest sessions without conflicting (#1)

• The plugin non-longer benchmarks everything but instead, the user is charged to manually flag each test as to
be or not to be benchmarked (#1).

3.7.10 v0.0.0 - May 5th 2019

• Initial demo release.

3.7. Changelog 15

	Quick Start
	Getting Help
	More Topics
	Recommendations (Must Read!)
	The Diff Command
	Customizing the Outputs
	Plugin Usage
	CLI Usage
	Contributing
	Changelog

