

Getting Started

pytest-django-queries is pytest plugin tool for measuring the database query count of a django project. It captures the SQL queries of marked tests to generate reports from them that can then be analyzed, proceeded and even integrated to CIs and GitHub as a peer reviewing tool (bot).

This is used to detect and correct features that are missing optimizations or that should be rethought, and which parts are doing great.

This is also used to quickly see and compare differences of made changes through the included diff tool.

This tool supports the Python versions: 3.6, 3.7, and 3.8.

Quick Start

	Install the tool by running pip install pytest-django-queries;

	Use the plugin by marking tests or by using the provided fixture:

import pytest

@pytest.mark.count_queries
def test_query_performances():
 Model.objects.all()

Or...
def test_another_query_performances(count_queries):
 Model.objects.all()

	Run pytest;

	Then use django-queries show to show the results directly into your console:

+---------+--------------------------------------+
| Module | Tests |
+---------+--------------------------------------+
module1	+-----------+---------+------------+				
		Test Name	Queries	Duplicated	
	+-----------+---------+------------+				
		test1	0	0	
	+-----------+---------+------------+				
		test2	1	0	
	+-----------+---------+------------+				
+---------+--------------------------------------+					
module2	+-----------+---------+------------+				
		Test Name	Queries	Duplicated	
	+-----------+---------+------------+				
		test1	123	0	
	+-----------+---------+------------+				
+---------+--------------------------------------+

	Or for a nicer presentation, use django-queries html to export the results as HTML. See this example for a demo!

[image: _images/html_export_results.png]

	By running it twice with the option described here and by running django-queries diff you will get something like this:

[image: _images/diff_results.png]

Warning

Please take a quick look at our recommendations before starting using the plugin in your project tests.

Getting Help

Feel free to open an issue [https://github.com/NyanKiyoshi/pytest-django-queries/issues] in our GitHub repository! Or reach hello@vanille.bid.

More Topics

	Recommendations (Must Read!)
	Fixtures That Generate Queries

	Using pytest-django Alongside of Counting Queries

	The Diff Command

	Customizing the Outputs
	Customizing the console output

	Customizing the HTML output

	Plugin Usage
	Customizing the Save Path

	Backing Up Results

	Running Tests Separately

	CLI Usage
	The HTML Command

	The SHOW Command

	The DIFF Command

	Contributing
	Recommendations

	Code Style

	Pull Request Review Process

	Changelog
	v1.2.0 - March 1st 2021

	v1.2rc0 - September 3rd 2020

	v1.1.0 - June 1st 2019

	v1.0.0 - June 7th 2019

	v1.0.0rc3 - June 6th 2019

	v1.0.0rc2 - June 5th 2019

	v1.0.0rc1 - May 24th 2019

	v1.0.0b1 - May 24th 2019

	v1.0.0a2 - May 17th 2019

	v1.0.0a1 - May 13th 2019

	v1.0.0.dev1 - May 12th 2019

	v0.1.0 - May 7th 2019

	v0.0.0 - May 5th 2019

Recommendations (Must Read!)

Fixtures That Generate Queries

If your test case is using fixtures that are generating any database queries, you will end up with unwanted queries being counted in your tests. For that reason, we recommend you to manually request the usage of the count_queries fixture and put it as the last parameter of your test.

By doing so, you will be sure that the query counter is actually always executed last and does not wrap any other fixtures.

Along side, you might want to still use the plugin’s count_queries marker which is useful to keep your tests separated from the query counting tests.

Your code will look like something like this:

import pytest

@pytest.mark.count_queries(autouse=False)
def test_retrieve_main_menu(fixture_making_queries, count_queries):
 pass

Using pytest-django Alongside of Counting Queries

You are most likely using the pytest-django plugin which is really useful for django testing. By following the previous section’s example, you might want to unblock the test database as well. You would do something like this:

import pytest

@pytest.mark.django_db
@pytest.mark.count_queries(autouse=False)
def test_retrieve_main_menu(any_fixture, other_fixture, count_queries):
 pass

The Diff Command

The plugin can backup the test results for you if you run the django-queries backup [BACKUP_PATH] command. It will create a backup to .pytest-query.old by default if previous results were found.

Warning

Bear in mind that it will override any existing backup file in the provided or default path.

After running pytest again, you can run django-queries diff to show the changes. Make sure you actually had previous results, otherwise it will have nothing to compare.

Customizing the Outputs

Customizing the console output

To be done, feel free to open a PR!

Customizing the HTML output

We are using jinja2 [http://jinja.pocoo.org/] as a template engine for rendering results. You can customize it by passing the --template <YOUR_TEMPLATE_PATH> option.

The test data are passed to the data variable. It contains an iterator of:

[
 ("the module name", [
 "the test name", {"query-count": int},
 ...
],
 ...
]

Note

We also provide a humanize function that takes a string a removes from it the test_ prefix.

For example, you would do the following to show all the results:

{% for module_name, module_data in data %}
 <section>
 <h2 class="text-capitalize">{{ humanize(module_name) }}</h2>

 <table class="table table-bordered mb-5">
 <thead>
 <tr>
 <th>Benchmark name</th>
 <th>Query count</th>
 </tr>
 </thead>

 <tbody>
 {% for test_entry in module_data %}
 <tr>
 <td class="text-capitalize">
 <code>{{ humanize(test_entry.test_name) }}</code>
 </td>
 <td>
 {{ test_entry['query-count'] }}
 </td>
 </tr>
 {% else %}
 <tr>
 <td colspan="2">
 <p>No data.</p>
 </td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </section>
{% else %}
 <p>No data.</p>
{% endfor %}

Plugin Usage

The plugin supports some optional parameters that are defined below.

Customizing the Save Path

--django-db-bench=PATH
Output file for storing the results. Default: .pytest-queries

Backing Up Results

The easiest way is to run the django-queries backup command which will create a copy of the current results.

Another way is by passing the --django-backup-queries parameter to backup previous results to .pytest-django.old`.

Or pass a custom path.

--django-backup-queries=[PATH]
 Whether the old results should be backed up or not before overriding.

Running Tests Separately

To only run the count_queries marked tests and nothing else, you can run pytest -v -m count_queries.

CLI Usage

Usage: django-queries [OPTIONS] COMMAND [ARGS]...

 Command line tool for pytest-django-queries.

Options:
 --help Show this message and exit.

Commands:
 html Render the results as HTML instead of a raw table.
 show View a given rapport.

The HTML Command

Usage: django-queries html [OPTIONS] [INPUT_FILE] [-o OUTPUT FILE]

Render the results as HTML instead of a raw table.

Options:
 -o The path to save the HTML file into
 django-queries.html by default.
 You can pass a dash (-) to write to stdout as well.

 --template JINJA2_FILE Use a custom jinja2 template for rendering HTML results.

 --help Show this message and exit.

The SHOW Command

Usage: django-queries show [OPTIONS] [INPUT_FILE]

View a given rapport.

Options: none

The DIFF Command

Usage: django-queries diff [OPTIONS] [LEFT_FILE] [RIGHT_FILE]

Render the diff as a console table with colors.

Options: none

More details on how to use the diff command properly.

Contributing

To contribute, you can fork us! And open any pull request or tackle any issue in our GitHub repository [https://github.com/NyanKiyoshi/pytest-django-queries/issues].

Recommendations

	Try to be on one of the latest master versions.

	Try to always put and commit your change sets into a new and meaningful branch in your fork.

	Update the changelog file with the changes you made.

Code Style

We are using Black [https://github.com/python/black] and Flake 8 [http://flake8.pycqa.org/en/latest/] to ensure a consistent code-style and reduce common Python issues in changes.

You can install a checker by running pre-commit install after installing our development requirements (pip install -e '.[dev]'). After that, you can add your changes through git and run pre-commit to check if your changes are issue-free.

Pull Request Review Process

Your contributions will get reviewed and will receive comments, remarks and suggestion to get the best of your pull request! It may take time, days or even weeks before you get a review from us. But don’t worry, we won’t forget about it, it just mean it is in a backlog because we are too busy for now.

You will get reviews from bots (CIs) that will succeed or fail. Mostly from travis-ci and codecov. Please be careful about them, they are important checks that we get your contribution denied as long as those checks are not passing.

Travis-ci is there to check that your changes work (tests and linters). If travis fails, it means something is wrong with your changes. Look at the logs, it will tell you what’s going on!

Codecov is there to report the test coverage of your changes. We have a strict 100% coverage, meaning that all the code is covered by automatic tests. Please test all your changes and test them hastily, don’t test just for the sake of testing and to get a proper coverage… it’s wrong. We want the tests to prevent any error and any potential breaking from changes!

Finally, make sure you are using the latest version of the dependencies and that you have read our documentations.

Changelog

v1.2.0 - March 1st 2021

	Shipped support of pytest-xdist >= 2.0 to stable.

v1.2rc0 - September 3rd 2020

	Some tests were fixed as they were in a failing state from a old file reformatting.

	pytest-xdist compatibility was fixed for latest major version: 2.0. The bad terminologies (slaves and masters) were removed.

	Deprecated support of pytest-xdist <2.0, will be dropped on pytest-django-queries 2.0 release.

	Official compatibility for Python 2.7, 3.4 and 3.5 was dropped.

v1.1.0 - June 1st 2019

	The cli tools now display the number of duplicated queries.

v1.0.0 - June 7th 2019

	Released the stable v1.0.0 release without any changes.

v1.0.0rc3 - June 6th 2019

	Added support for running tests into multiple workers (pytest-xdist).

v1.0.0rc2 - June 5th 2019

	Renamed the marker description to be more meaningful about was it does.

	Fixed a typo in the project description (PyPi and GitHub).

	Added help texts for named parameters in the cli.

	Fixed the wrong help text saying it is taking an integer when it actually expects a file path.

	Users can now mark tests without having the count_queries fixture injected automatically if a custom order or manual usage is needed.

	Added a better filtering of unwanted keywords in humanization of test names. It now handles test cases names inside modules (dotted import names).

	Added a backup command to django-queries to make it easier of making a copy of the current results.

v1.0.0rc1 - May 24th 2019

	Users can now backup/copy their previous results using the --django-backup-queries parameter when running pytest.

	The HTML cli command now exports to django-queries-results.html by default instead of stdout, instead, users have to run django-queries html - for the output to go in stdout.

	The code now enforces the Black code style and Flake 8 checks in addition to isort.

v1.0.0b1 - May 24th 2019

	Implement a diff command for comparing results.

v1.0.0a2 - May 17th 2019

	The requirements that could generate any diverging results between installation have now been freeze.

	A “Read The Docs” documentation has been made and published.

	Guides on how to release and contribute have been added.

	The HTML template has been moved to its own file under the package directory as templates/default_bootstrap.jinja2.

	The Cli commands are now taking optionally the report path file, so it can now be omitted.

v1.0.0a1 - May 13th 2019

	In #12, stopped storing the benchmark results in a file named after the current date and time.
Instead, it will always save into .django-queries and won’t contain a json file extension
anymore to make it less appealing as it’s not meant to be read by a human.

	In #12, dropped the environment variable PYTEST_QUERIES_SAVE_PATH and replaced
and introduced the --django-db-bench PATH option instead, which does exactly the same thing.

v1.0.0.dev1 - May 12th 2019

	Introduced the cli (#3) with two commands:

	show that process a given benchmark result to render a summary table

	html render the table in HTML, the template can be customized using --template <path>

v0.1.0 - May 7th 2019

	The plugin is now able to support multiple pytest sessions without conflicting (#1)

	The plugin non-longer benchmarks everything but instead, the user is charged to manually flag each test as to be or not to be benchmarked (#1).

v0.0.0 - May 5th 2019

	Initial demo release.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/diff_results.png
api.benchmark homepage
test name
retrieve main menu
retrieve product list
retrieve secondary menu
- retrieve shop

api.benchmark product
test name

+ product details

api.benchmark variant
test name

+ retrieve variant list

left count

left count

right count

duplicate count

_static/file.png

_images/diff_results.png
api.benchmark homepage
test name
retrieve main menu
retrieve product list
retrieve secondary menu
- retrieve shop

api.benchmark product
test name

+ product details

api.benchmark variant
test name

+ retrieve variant list

left count

left count

right count

duplicate count

_images/html_export_results.png
Benchmark Results

Api.benchmark Checkout

Benchmark name

Add Billing Address To Checkout
Add Shipping To Checkout
Checkout Payment Charge
Complete Checkout

Create Checkout

Api.benchmark Homepage

Benchmark name
Retrieve Main Menu
Retrieve Product List
Retrieve Secondary Menu

Retrieve Shop

Query count

a

16

45

Query count

5

4

Duplicated count

0

0

Duplicated count

0

0

_static/html_export_results.png
Benchmark Results

Api.benchmark Checkout

Benchmark name

Add Billing Address To Checkout
Add Shipping To Checkout
Checkout Payment Charge
Complete Checkout

Create Checkout

Api.benchmark Homepage

Benchmark name
Retrieve Main Menu
Retrieve Product List
Retrieve Secondary Menu

Retrieve Shop

Query count

a

16

45

Query count

5

4

Duplicated count

0

0

Duplicated count

0

0

nav.xhtml

 Table of Contents

 		
 Getting Started

 		
 Recommendations (Must Read!)

 		
 Fixtures That Generate Queries

 		
 Using pytest-django Alongside of Counting Queries

 		
 The Diff Command

 		
 Customizing the Outputs

 		
 Customizing the console output

 		
 Customizing the HTML output

 		
 Plugin Usage

 		
 Customizing the Save Path

 		
 Backing Up Results

 		
 Running Tests Separately

 		
 CLI Usage

 		
 The HTML Command

 		
 The SHOW Command

 		
 The DIFF Command

 		
 Contributing

 		
 Recommendations

 		
 Code Style

 		
 Pull Request Review Process

 		
 Changelog

 		
 v1.2.0 - March 1st 2021

 		
 v1.2rc0 - September 3rd 2020

 		
 v1.1.0 - June 1st 2019

 		
 v1.0.0 - June 7th 2019

 		
 v1.0.0rc3 - June 6th 2019

 		
 v1.0.0rc2 - June 5th 2019

 		
 v1.0.0rc1 - May 24th 2019

 		
 v1.0.0b1 - May 24th 2019

 		
 v1.0.0a2 - May 17th 2019

 		
 v1.0.0a1 - May 13th 2019

 		
 v1.0.0.dev1 - May 12th 2019

 		
 v0.1.0 - May 7th 2019

 		
 v0.0.0 - May 5th 2019

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

